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Abstract TFM personnel are known as Traffic Management 
Coordinators (TMCs) or Traffic Management 
Specialists (TMSs), depending on the facility in which 
they work. The general term for these personnel is 
traffic managers. One of their primary responsibilities 
is to ensure that traffic at national airspace system 
(NAS) resources (e.g., airspace sectors, airports) does 
not exceed levels that can be safely managed by 
controllers. Traffic managers also endeavor to ensure 
fair and equitable treatment for all NAS users, i.e., 
operators of commercial, general aviation, military, and 
other aircraft. 

Air Traffic Flow Management (TFM) is the process of 
balancing demand for airspace and airport resources 
with the capacity of those resources, in order to achieve 
both safe and efficient traffic throughput.  Demand is 
typically estimated by predicting flight trajectories, and 
comparing the predictions to capacity metrics for 
airports and airspace.  The effectiveness of TFM 
decision-making depends on the accuracy of these 
predictions.  This effectiveness can be improved not 
only by improving prediction accuracy, but by 
quantifying the uncertainty in those predictions. When 
the uncertainty is known, decision analysis and risk 
management techniques can be applied to improve 
decision-making performance. To support this goal, a 
novel method has been developed for measuring and 
simulating uncertainty in traffic demand predictions.  
This method employs empirical observations of traffic 
characteristics to develop statistical models of the error 
distributions in demand predictions, which in turn can 
be used for Monte-Carlo simulation of specific traffic 
scenarios.  Preliminary statistical results are presented 
here, as well as a discussion of simulation applications 
for both analysis and real-time decision-support tasks.  

Traffic managers have many options when trying to 
address excess demand on a resource.  For excess 
airport demand, a ground delay program is often used, 
in which arrival “slots” are rationed among airspace 
users, and flights are assigned delayed departure times 
such that available arrival capacity will be efficiently 
used.  En route sector congestion, resulting from 
unusually high demand or when available airspace is 
limited due to hazardous weather, can be controlled 
several ways.  Flights can be rerouted around hazardous 
weather and/or congested areas.  Access to airspace can 
be limited by imposing miles-in-trail (MIT) restrictions 
at the airspace boundary, by applying ground delay, or 
in extreme cases by halting departures to some 
destinations (ground stop). 

Background 

Traffic flow management (TFM) is the process by 
which the Federal Aviation Administration (FAA), with 
the participation of airspace users, seeks to balance the 
capacity of airspace and airport resources with the 
demand for these resources.  Together with the FAA’s 
air traffic control (ATC) function, which provides for 
the safe separation of aircraft from each other and from 
restricted areas, TFM is a central component of the 
nation’s air traffic management (ATM) system. 

Decision support tools for TFM, therefore, must 
provide predictions of resource demand.  Ideally, 
predictions should be provided based both on the 
current traffic situation and on proposed traffic 
management strategies, so that candidate solutions can 
be developed and compared.  For example, the 
Enhanced Traffic Management System (ETMS)1 used 
in the U.S. National Airspace System (NAS) provides 
real-time resource demand estimates based on predicted 
aircraft trajectories.  In the near future, ETMS will be 
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capable of predicting resource demand as it would be 
affected by proposed reroute strategies2, and research 
continues towards more sophisticated strategy impact 
assessment capabilities.3,4 

Alerting of Excess Demand 

The ETMS provides demand predictions for most NAS 
sectors in 15-minute bins, for prediction look-ahead 
times (LAT) of several hours.  This information is 
available for particular sectors by user request, or in a 
collected form on a Center Monitor (CM) display as 
illustrated in Figure 1.  The CM is a user-configurable 
display showing alerts for some or all of the sectors in a 
single Air Route Traffic Control Center (ARTCC).  

Each cell in the CM matrix represents a 15-minute 
period, and the number in the cell represents the 
maximum predicted traffic count for any single minute 
within that 15-minute span.  This value is often referred 
to as maximum instantaneous aircraft count (IAC) or 
simply “peak count” for the interval. The horizontal 
axis indicates increasing LAT (corresponding to 2015 
to 2300 UTC, in this case).  Each matrix row represents 
predictions for single sector (e.g. ZDC50).  Next to the 
sector name are two sector alert thresholds (e.g. 
“18/18”), although currently, only one is used.  This 
threshold is called the Monitor/Alert Parameter (MAP) 
and is compared to the peak count to determine whether 
a sector should be alerted. When the peak count is 
predicted to exceed the MAP for a sector, the 
corresponding box is colored yellow or red. Red alerts 
indicate that, of the aircraft involved in the peak count, 

enough are already airborne to exceed the MAP even if 
pre-departure flights are not counted. Otherwise, the 
alert will be yellow.   

 
Figure 1. ETMS Sector Count Monitor Display 

The MAP value is set to represent a traffic level high 
enough to be of concern to the traffic manager.  It is not 
strictly accurate to refer to the MAP as a sector 
capacity, since there are many factors involved in 
sector workload beyond the number of aircraft 
present.5,6  However, it is an easily-understood 
abstraction of workload for alerting purposes. 

The alerts for all 20 centers can be aggregated on a 
single NAS Monitor display, which is similar in form to 
the CM except that each matrix row represents a whole 
ARTCC, and the numbers in the boxes reflect the 
number of alerted sectors in that ARTCC for the 15-
minute time period.  At the more detailed level, a single 
cell on the CM can be selected to produce a Time-in-
Sector (TIS) display, which shows when individual 
flights will enter and exit a sector. 

These sector traffic predictions are key TFM decision 
aids. Traffic managers use the alerts to identify areas of 
potential en route congestion, and by studying the 
flights and traffic flows involved, to identify candidate 
solutions such as reroute initiatives or MIT restrictions. 
Also, proposed TFM decision support systems3 make 
direct use of these predictions when, for example, 
predicting the impact of a proposed reroute initiative. 
However, the usefulness of these predictions is a 
function of their accuracy. At the long LAT timeframes 
associated with strategic TFM decision-making, the 
predictions may not be very accurate.  

Demand Prediction Uncertainty and Decision-Making 

While traffic managers know that sector demand 
predictions are uncertain, they have very little 
information to use in quantifying that uncertainty and 
taking account for it when making decisions.  ETMS 
sector load predictions include a crude estimate of 
uncertainty, in that alerts are differentiated into “red” 
and “yellow” based on whether or not all the aircraft 
involved are airborne.  This is based on the assumption 
that departure time uncertainty is the largest source of 
uncertainty in the predictions.  While this is useful for 
prioritizing traffic situations, in that the traffic manager 
would be justified in looking at red alerts before yellow 
alerts, it says little about the actual magnitude of 
uncertainty.  For example, does a yellow alert of 3 
aircraft over the MAP mean that there is an 80% chance 
that demand will exceed the MAP, or a 20% chance?  
Clearly, the answer to this question should influence the 
traffic management decision. 
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One way to factor in prediction uncertainty is to present 
probabilities directly or indirectly on traffic 
management decision support displays, relying on the 
skill of the traffic manager (and some procedural 
guidance) to use such information appropriately.  
Research is underway to understand the human factors 
issues in this area.  Masalonis, et al7 have developed 
candidate visualization methods for probabilistic sector 
demand information, in research that is directly linked 
to the work presented here. 

Probabilistic predictions can also be used by decision 
support automation.  Given detailed knowledge of 
demand prediction error distributions, standard decision 
analysis techniques can be applied to improve decision-
making, assuming that a standard cost/utility criterion 
can be developed.  For example, cost functions can be 
developed for both allowing excess demand and for 
taking action to prevent excess demand (e.g., rerouting 
flights).  These functions would be partially subjective, 
reflecting the operational difficulties of managing 
excess demand or taking action to prevent it, and 
partially objective, reflecting the financial impact of 
traffic management actions on airspace users.  The 
combination of these two functions would represent a 
traffic management policy.  Applying decision analysis 
techniques and the known prediction uncertainties, 
decision support tools could compute “optimal” 
congestion management solutions with respect to this 
policy. 

To use prediction uncertainty in any of these ways, it 
must be possible to measure and model it for a wide 
variety of specific traffic situations.  The research 
presented here addresses this issue. 

Previous Work on Demand Prediction Uncertainty 

Previous work has been done on quantifying and 
modeling demand prediction uncertainty, using two 
primary approaches.  Mueller8 and Meyn9 employed 
simulation approaches in which specific sources of 
trajectory prediction uncertainty were represented by 
closed-form statistical distributions, and Monte-Carlo 
simulation applied to determine the cumulative effects 
of the uncertainties on sector demand predictions.  This 
technique is powerful, since it can theoretically be used 
to model arbitrary traffic and airspace situations.  The 
component distributions can be controlled to simulate 
possible future changes in the operating environment 
(e.g., better data sources) and thereby evaluate the 
potential benefits of reducing the component 
uncertainties.  It is feasible and instructive to use this 
approach for specific examples, such as in Ref. 8 where 
it is applied to a single sector, for a single aircraft type, 
on a single route. However, it is difficult and expensive 

to develop general purpose simulation models, with all 
required uncertainties, that work for a wide range of 
traffic types and conditions. 

The second approach involves empirical study of the 
differences between predicted trajectories and actually-
flown flight paths.  This is subtle, because even for 
perfectly-predicted demand, the actual traffic may not 
correspond to the predictions.  For example, if a large 
sector load excess is predicted, traffic managers will act 
to prevent it from occurring.  However, the prediction 
of the demand may have been perfectly accurate, given 
the intentions of the flights at the time the prediction 
was made; the sector demand alert, in that case, worked 
precisely as intended. 

The method used by Wanke, et. al.10 overcomes this 
problem.  By filtering out situations in which high 
demand levels were predicted, and traffic management 
actions were likely to have been taken, actual traffic 
counts could be compared to predicted counts to 
establish distributions of prediction error.  The 
advantages of this method are that all uncertainties are 
captured in a small set of conditioned distributions 
(e.g., by primary sector traffic type), it is easy to apply 
to the entire NAS, and thus it provides valuable insight 
into the overall characteristics of prediction 
uncertainties in different kinds of airspace.  The 
disadvantage is that by aggregating all uncertainty in a 
small set of distributions, it isn’t possible to simulate 
different kinds or magnitudes of prediction 
uncertainties.  It is also difficult to specialize the results 
to particular traffic situations, since the distributions 
reflect only peak counts, and cannot be applied to 
predictions of individual aircraft or specific flows. 

Research Focus 

The uncertainty modeling method described here 
attempts to address the deficiencies of both previously 
discussed methods.  It is based on empirical study of 
the entire NAS, making it applicable to large-scale 
traffic analysis.  It also breaks overall uncertainties 
down into categories whose parameters can be varied to 
simulate alternate prediction situations.  Finally, it 
supports Monte-Carlo traffic simulations, so that 
uncertainty in real-world traffic situations can be 
modeled to support decision analysis studies and real-
time decision support tools. 

A Sector-Transit Approach to Modeling Prediction 
Uncertainty 

Before discussing the modeling of prediction 
uncertainty, it is helpful to review the way trajectories 
are predicted by current ATC and TFM decision-
support systems.  Aircraft trajectories can be modeled 
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at different levels of fidelity, depending on the 
application and the available input data.  In air traffic 
management applications, the input data include filed 
flight plans, flight schedules and historical routes (for 
flights which have not yet filed plans), wind forecasts, 
track reports, and flight path constraints.  The ETMS, 
and some other current systems and prototypes3,11, use 
these data along with aircraft performance 
characteristics and a kinematic flight model to predict 
future positions.  One decision-support system12 uses a 
kinetic modeling approach in which the point-mass 
differential equations of aircraft motion are integrated.  
Regardless of approach, the resulting trajectory will 
contain a geographical (lateral) path based on the filed 
route, and a speed/altitude profile based on aircraft 
performance, winds, and ATC constraints. Figure 2 
shows part of a fictional climb profile, to illustrate 
where prediction uncertainty arises. 

The flight departs, climbing to the speed limit altitude 
of 10,000 feet MSL.  In the U.S., flights must not 
exceed 250 knots of calibrated airspeed (KCAS) below 
this altitude.  The aircraft accelerates to a climb speed, 
typically a constant value (such as 300 KCAS, for one 
typical four-engine turbofan aircraft) and resumes 
climbing.  Frequently, the aircraft will need to level off 
briefly to satisfy an ATC constraint.  These constraints 
make traffic flows more manageable for the controller 
teams.  In this example, the constraint prevents 
climbing flights from entering sector ZAA38, which 
might be designed primarily to handle level traffic. 
These constraints are defined either in the Standard 
Operating Procedures (SOP) for an ATC facility, or in a 
Letter of Agreement (LOA) between adjacent facilities.  
Similar constraints may exist during the descent phase. 

Several sources of uncertainty are apparent from this 
trajectory representation.  For example, it is difficult to 
maintain accurate representations of aircraft 

performance for all equipment types in common use, 
and even were this possible, variations in parameters 
such as aircraft takeoff weight (unknown to TFM 
decision support automation) produce significant 
variations in actual performance.  Wind forecasts 
contain uncertainty, and ATC constraints are not always 
applied precisely as stated in the LOAs and SOPs.  
Pilots may choose, for business reasons, to cruise at 
slower or faster speeds than filed in the flight plan.  For 
trajectories of flights that have not yet departed, the 
departure time is difficult to predict precisely.  The 
challenge addressed here is in quantifying these and 
other sources of uncertainty well enough to provide 
insight into, and improvements to, the TFM decision-
making which is based on these predictions. 

Track Distance

A
lt
it
u

d
e

Initial climb

Speed limit altitude: 

level acceleration 

to climb speed

Constant KCAS climb

10,000 ft

FL290

FL350

FL310

Level off for

ATC restriction

Constant Mach climb

Cruise

"Cross ARTCC 

boundary at or 

below FL290"

sector ZAA38

sector ZAA28

sector ZBB79

sector ZBB52

ZBB ARTCCZAA ARTCC

 

Figure 2. Trajectory Profile Prediction 
Trajectory Representation 

The development of a model for estimating traffic 
demand uncertainty necessitated identifying a means 
for representing aircraft trajectories in the NAS.  To 
support the objectives of this work, several 
requirements were identified for this representation. 
Specifically, it was determined that the approach 
should: 

Provide resolution of demand for NAS resources to 
the sector level 

• 

• 

• 

• 

• 

• 

Support human-in-the-loop (HITL) experiments in 
which subject matter experts are presented with 
probabilistic displays of sector demand 
Enable the generation of deterministic displays of 
the same traffic situations 
Allow generation of distributions and sensitivity 
analyses for TFM decision analysis studies 
Be computationally-tractable for generating large,  
statistically-valid trajectory populations 

A crucial consideration was that decision support 
displays used in HITL experiments would present 
hypothetical situations that are consistent with the 
characteristics of real-world situations that traffic 
managers may encounter in the course of their work. To 
support the study of TFM decision analysis alternatives, 
it will be necessary to resolve traffic demand to the 
level of each individual aircraft within a time/airspace 
volume of interest. Earlier work10 provided a simple 
measurement of overall uncertainty, but this would not 
be sufficient for the intended application here. These 
considerations motivated the examination of three 
possible trajectory representations: 

Kinematic approximation: This approach models 
the kinematic equations of motion of each aircraft 
in the time/space volume of interest using a series 
of constant-acceleration rhumb-line segments. The 
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resultant representation is a piecewise linear 
approximation to a trajectory such as that shown 
earlier in Figure 2. 

• 

• 

Directed sector transits: With this approach, 
flight paths are abstracted as a series of time-
stamped sector entries. By including the 
latitude/longitude coordinates of each sector 
boundary traversal, it is possible to reconstruct the 
general characteristics of an aircraft’s flight from 
origin to destination. The segment between two 
successive sector boundary crossings is assumed to 
be traversed at constant-speed. 

Cell transits: Like the sector transit approach, this 
method abstracts an overall trajectory as a series of 
airspace cell traversals. Each cell provides a greater 

degree of spatial resolution than would a NAS 
sector definition. 

Table 1 provides a comparison of each of these 
methods in relation to the requirements discussed 
above. For the intended application, it was determined 
that the cell transit method offered no significant 
benefits over the sector transit approach, but would 
explicitly require the definition of airspace cells, and 
their relationship to actual sector boundaries. While the 
kinematic approach would capture all of the details of 
an aircraft’s flight between its origin and destination, it 
would be very computationally-intensive both to 
develop uncertainty models for every flight segment, 
and to employ them in the proposed Monte-Carlo 
simulation. It was therefore determined that the sector 
transit approach provided a good compromise.

Table 1. Candidate Trajectory Representation Methods 

Method Pros Cons 
Kinematic 
Trajectory 

• Most widely applicable 
• Real routes/altitudes 
• Can adapt easily for future studies, traffic 

generation 
• Can vary distributions easily 
• Can calculate traffic complexity 

• Difficult to model all required uncertainty 
distributions (e.g. for all aircraft types) 

• Computationally-intensive 
• Validation difficult 
• Must recompute sector crossings  

Sector Transit • Easiest to implement and validate  
• Can capture error sources readily, given 

available data sources 
• Facilitates modeling of unanticipated 

flights and reroutes 
• Due to aggregation, requires less data to 

develop distributions 

• Harder to adapt to future studies, e.g. 
different NAS airspace organization 

• Statistics depend on sector map, which 
can change 

• Harder to model en route (cruise) speed 
errors than in kinematic representation  

• Difficult to vary conditions 
• Cannot easily evaluate traffic complexity 

within sectors 
Cell Transit • Similar advantages to sector approach 

• Discrete modeling techniques can be 
used 

• Applicable to solution search algorithms 
• Pre-computed sector map 

• Difficult to validate 
• Difficult to gather statistical distributions 
• Requires formal definition of cell 

boundaries within existing NAS structure 

 
Figure 3 illustrates the sector transit approach for 
representing aircraft trajectories. The dotted line 
represents a portion of an aircraft’s trajectory through a 
hypothetical cluster of sectors, while the solid line 
represents the sector transit approximation that would 
be generated from this flight path. As shown, the 
aircraft climbs into high-altitude sector ZZZ06 from 
ZZZ02 and then levels off. Its subsequent lateral 
maneuvering illustrates the effects of the sector transit 
approximation. Specifically, the solid circles show the 
points that are used to build up the high-altitude sector 
transit list, which would consist of the following sectors 
in sequence: {ZZZ06, ZZZ27, ZZZ28, ZZZ20}. Each 

entry in the sector transit list contains the following 
information: 

Sector name • 
• 
• 
• 
• 
• 

Time of sector entry 
Altitude at sector entry 
Speed at sector entry 
Latitude/longitude at sector entry 
Flight phase (i.e., climb/cruise/descent/unknown) 

This information can be used to reconstruct an 
approximation of an aircraft’s flight from origin to 
destination. As shown in Figure 3, a result of this 
approach is that the details of an aircraft’s maneuvering 
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These are illustrated by Figures 4a-4d.  In Figure 4a, a 
hypothetical airspace demand prediction is shown.  
Three flights are predicted, one of which is airborne at 
the time of the prediction; all flights pass through sector 
ZAA45.  Figure 4b demonstrates error categories (1) 
and (2), which can be considered flight existence 
uncertainties.  In this case, one of the predicted flights 
is cancelled (a no-show) and one new flight, which did 
not have an active flight plan at the time the prediction 
was made, appears (a pop-up).  Note that these errors, 
as for all of the error categories discussed here, are 
conditioned on a particular prediction.  For example, 
suppose prediction A is made at 1200 UTC for sector 
demand at 1400 (120 minute LAT), and prediction B is 
made at 1300.  If an unscheduled flight, departing at 
1330, files its first flight plan at 1230, then it will be 
considered a pop-up error for prediction A, since there 
is no information upon which to anticipate and model 
the flight at 1200.  However, it will not be an error with 
respect to prediction B because at 1300 a flight plan is 
available, and thus a trajectory will have been predicted 
for that flight. 

 

Figure 3. Directed Sector Transit Representation of 
Aircraft Trajectories 

within a particular sector are lost, and its motion is 
treated as a straight line from one sector entry to the 
next. However, this is an adequate approximation for 
this effort’s simulation requirements, which focuses on 
modeling prediction error distributions for TFM. Since 
the times and locations at which an aircraft enters and 
exits a sector are captured, this modeling approach 
captures the occupancy of individual NAS sectors as 
well as the overall flow patterns through them. The 
trajectory representation approach described above falls 
between physics-based simulations and direct 
measurement of the uncertainty. 

Figure 4c illustrates error category (3), in which a 
flight’s routing is amended after the prediction was 
made, causing demand prediction errors for several 
sectors.  Note that error category (4), in which a flight’s 
altitude profile would be changed, would produce a 
similar effect.  For example, the flight might travel 
through a low-altitude sector rather than a high-altitude 
one.  Thus, categories (3) and (4) are flight intent 
uncertainties.   Uncertainty Modeling 

The purpose of building a library of sector transit 
representations of predicted demand and actual 
utilization of NAS resources is to develop insight into 
the distribution and sources of demand prediction 
errors. Specifically, given a nominal, deterministic 
prediction for a real-world traffic situation, what is the 
distribution of demand prediction errors for that 
situation? 

Figure 4d shows the impact of category (5) and (6) 
errors, both of which cause errors in predicting the 
position of the flight along its trajectory.  These error 
types cause flight progress uncertainty.  Previous 
studies have clearly demonstrated13,14 that departure 
time prediction uncertainty is the single greatest 
prediction error component for pre-departure flights. 

By categorizing the errors this way, distributions can be 
developed directly from empirical observation.  
Trajectory predictions, made at varying LAT, are 
compared to flight tracks, if the flight actually operated, 
to gain observations to develop distributions for each 
error category.  These distributions form the basis of a 
Monte-Carlo simulation which can be used to estimate 
prediction uncertainty for a wide variety of traffic 
situations.  The distributions themselves are also of 
interest, since they represent the relative contributions 
to overall uncertainty from the various error categories.  
Some preliminary results will be discussed later; first, 
the simulation process, source data selection and 
derivation of statistical error models will be described. 

In this approach, flights are treated individually, but 
trajectory prediction errors are grouped into observable 
error categories, which are assumed to be independent.  
This assumption is not guaranteed, and will be further 
discussed later.  The error categories were chosen to 
maximize statistical independence and to span all major 
sources of error.  There are six categories: 

1) Flights that do not appear as expected (no-shows) 
2) Unanticipated flights (pop-ups) 
3) Routing 
4) Altitude 
5) Departure time 
6) Flight progress 
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Figure 4a: Baseline Demand Predictions.  Predictions for 

sector ZAA45 show three aircraft, one of which is airborne, to 
cross ZAA45 during the time period of interest. 
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Figure 4b: Flight Existence Uncertainty.  In reality, the 
flight from airport KGHI is cancelled, and an unexpected 

flight from KJKL appears. 
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Figure 4c: Flight Intent Uncertainty.  The flight from 

KABC is rerouted through ZAA78 and ZAA34 instead of 
ZAA45 and ZAA23. 
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Figure 4d: Flight Progress Uncertainty. The flight from 

KDEF leaves 10 minutes later than predicted (departure time 
uncertainty) and the flight from KABC cruises at a higher 

speed than expected (sector transit time uncertainty). 

Monte-Carlo Simulation Process 

The fundamental simulation “question” can be posed as 
follows.  Given a prediction time and a full set of NAS 
trajectory predictions for a range of look-ahead times 
(e.g. up to 6 hours ahead, for strategic TFM planning), 
what are the statistical properties of the prediction 
errors?  Using the previously-defined error categories, 
the procedure for this calculation is as follows: 

1. From the baseline trajectory predictions, compute 
the deterministic sector demand.  This is analogous 
to how ETMS does this today. 

2. Conduct a large number N of Monte-Carlo trials, 
each generating an alternate “actual” set of 
trajectories, for computation of stochastic sector 
demand: 

a. For each pre-departure trajectory in the 
baseline set, determine if the flight will be a 
no-show.  If so, delete from the set for this run. 

b. For each trajectory, determine whether the 
flight intent will be changed (routing or 
altitude), and if so, select a modified trajectory 
for it. 

c. For each pre-departure trajectory, apply the 
departure prediction error distribution. 

d. For each trajectory, apply the sector transit 
time prediction error sequentially through the 
sector list. 

e. For each time bin in the prediction period, 
determine how many pop-up flights appear, 
select full trajectories for them, and add them 
to the trajectory set. 

f. Calculate sector demand from the modified 
trajectory set. 

3. Once the N trials are complete, calculate desired 
demand statistics, by sector. 

At this point, the sector demand uncertainties have been 
quantified.  The results can be compared to the 
deterministic sector demand, used to drive probabilistic 
demand displays (as in Ref. 7), applied to decision 
analysis, or potentially used directly by real-time, 
automation-assisted decision support systems. 

Source Data Selection 

The raw data used to build the library of sector transits 
was obtained from ETMS. The full model will be based 
on transit data for the entire month of January 2003. 
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However, data samples presented later in this paper use 
a smaller set for preliminary analysis: 

• 

• 

• 

• 

• 

• 

• 

• Actual flight histories for the entire NAS between 
June 4 and 6, 2003, generated from ETMS’s one-
minute track reports 
Predictions in 15-minute intervals for the entire 
NAS between June 3 and 6, 2003. The predictions 
start earlier than the actual flight histories because 
any flights departing within the first six hours of 
June 4 would have associated ETMS predictions on 
June 3. 

The analysis focused on en-route airspace under the 
control of an ARTCC. All flights not meeting these 
criteria were dropped from the data. The original raw 
text data was converted to an annotated extensible 
markup language (XML) format to facilitate analysis 
and integration with subsequent simulation 
applications. It was then necessary to “correlate” the 
data to match up each prediction with an associated 
actual flight, and to identify all of the predictions that 
were made for each actual flight record. This 
correlation process enabled the identification of pop-up 
flights and no-shows, since the former would be 
indicated by the presence of an actual trajectory with no 
prior predictions, and the latter would be indicated by 
one or more predictions but no actual flight record. 
Matching predictions with actual trajectories also 
facilitates identification of changes in flight intent, both 
before and during each aircraft’s flight. 

The process used for finding all of the predictions 
associated with an actual flight record was as follows: 

For each actual flight record, scan the relevant 
prediction data (up to six hours prior to the actual 
departure time). 
Identify those predictions whose ETMS flight 
index (an identifier that will be unique for that 
flight on that day) matches the index on the 
associated actual flight record. 
When a matching prediction is found, append the 
actuals flight record to indicate the timestamp on 
the correlated prediction. This provides a 
mechanism for subsequent retrieval of that 
prediction. 

The converse process, for identifying the actual flight 
record associated with each prediction, was as follows: 

For each prediction record, scan the relevant actual 
flight data (up to six hours beyond the time at 
which the prediction was made) 
Determine if any of the actual flights have an 
ETMS flight index identical to that of the 
prediction. If the actual flight is on the next 

calendar day, also check for a match in flight ID 
(e.g., UAL1444). 
When a matching actual flight is found, append the 
prediction record to indicate the actual departure 
date of the flight associated with that prediction. 

By performing this pairwise matching process across 
the entire set of ETMS predictions and actual flights, it 
was possible to construct a cross-correlated library for 
prediction error analysis. 

Deriving Prediction Error Distributions for Simulation 

Once correlated predictions and actual flight paths have 
been produced in sector-transit format, error 
distributions can be developed to support the Monte-
Carlo simulation described earlier.  The statistical 
model formulation for each required uncertainty 
category is described in the following sections.  This 
formulation includes selecting the conditioning 
variables (CVs), collecting the observations, choosing a 
representation for the statistical distributions, and either 
storing the distribution directly (for sample-based 
distributions) or fitting parameters to closed-form 
statistical models. 

It should be noted that the process described here, while 
generally applicable to any traffic or weather situation, 
is dependent on the chosen source data.  In the initial 
version of the simulation, the distributions will 
represent a nominal statistical characterization of 
demand predictions for the NAS as of January 2003, 
given relatively good (i.e., no convective) weather.  It 
would not be directly applicable to unusual traffic 
situations, such as when a large line of thunderstorms is 
present.  Such analyses would require selecting 
different source data, and possibly different statistical 
model formulations. 

No-shows 

No-shows require the simplest statistical model.  For 
each pre-departure in the baseline prediction set, the 
model must provide the probability of the flight 
becoming a no-show.  The model is parameterized by 
the following CVs: 

• Baseline departure (runway leaving, or “wheels-
up”) time, in hourly bins 

• LAT to predicted wheels-up time, in 15 minute 
bins 

• Origin 
• Destination 
• Operation Category (General Aviation, Air Carrier, 

or Military) 
• Operator (Airline, or not specified) 
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Destination • Estimated time enroute (ETE), in 15 minute bins 
• Aircraft Class (Piston, Turboprop, Jet) 

Observations are taken by running through the 
correlated prediction records, identifying whether the 
predicted flight actually operated, and recording the 
CVs and observations.  The distribution model is a 
simple probability of no-show for each combination of 
CVs.   

Routing/Altitude 

In contrast to no-shows, flight intent errors are the 
hardest uncertainty to model.  There are many different 
reasons that both flight routing and altitude changes can 
be made, and these reasons may not be easily 
observable in the data.  For example, the presence of 
clear-air turbulence may cause large numbers of pilot-
requested altitude changes.   

Nonetheless, it is possible to construct a statistical 
model that represents the likelihood and characteristics 
of flight intent changes at a sector-transit level.  The 
central hypothesis of the model is as follows. For each 
sector a flight enters, there is a measurable probability 
that the actually-flown sector list will begin to deviate 
from the predicted sector list.  Should this occur, there 
are a number of possible alternate lists that can be 
flown, and these can be parameterized and sampled 
from an observed, empirical distribution. 

The observations are made by comparing the sector 
transit lists, in time order, between each predicted 
trajectory and the corresponding actual trajectory.  Each 
time the next sector in the predicted trajectory list 
corresponds to the next actually-transited sector, a flight 
counter is incremented according to the CVs listed 
below; this count is necessary to identify the total 
sample size, for later calculation of the probability that 
flight intent will change.  If the next sector does not 
correspond, then it is assumed that the flight intent 
changed in the current sector, and an observation is 
stored.  The observation consists of the entire, as-flown 
trajectory from the current sector forward, and becomes 
part of an empirical distribution for sampling in step 2b 
of the simulation process.  In essence, there is a simple 
conditional probability, in each sector that a flight is 
predicted to enter, that the flight will undergo a 
sufficiently-large change in routing or altitude profile to 
change the future sector list.  If, in a Monte-Carlo 
simulation run, this is calculated to occur, then a new 
trajectory from that point will be selected at random 
from trajectories that were observed to change in that 
sector.  These observations are classified by the 
following variables: 

• 

• 
• 
• 
• 
• 

Current Sector 
Time-of-day 
Aircraft class 
Operation category 

Departure Time 

Departure time prediction errors are observed by taking 
pairs of correlated predicted and actual trajectories, and 
subtracting the predicted runway departure (wheels-off) 
time from the actual wheels-off time.  Thus, positive 
values indicate that the flight departed later than 
predicted.  These are collected and classified via the 
following CVs: 

• Predicted wheels-up time (hourly bins) 
• LAT to predicted wheels-up time (15 minute bins) 
• Origin 
• Destination 
• Operation category 
• Operator 
• ETE (15 minute bins) 
• Aircraft class 

Sector Transit Time 

Airborne flight progress prediction errors are captured 
by modeling errors in predicting the time it takes a 
flight to transit a sector.  However, the time it takes a 
flight to transition through a sector is dependent on the 
precise path taken, which has been abstracted away by 
the sector-transit trajectory representation (as shown in 
Figure 3).  To overcome this difficulty, a “directed 
transit” model is used.   In this model, flights are 
classified by sector triplets, in addition to other 
variables of interest.  The sector triplet includes the 
previous, current, and next sector in the transit list.  
Thus, flights will be grouped together by approximate 
flow pattern, even if there are differences between the 
exact routes of flight.  For example, in Figure 3 above, 
the sector transit prediction error for sector ZZZ27 
would be governed by the error statistics of flights 
traversing the triplet {ZZZ06, ZZZ27, ZZZ28}.  This 
technique allows collection of prediction error statistics 
directly from trajectories in the sector-transit 
representation.  Note that a sector triplet may begin 
with the flight origin rather than a sector, or end with a 
flight destination, if the error is being studied for the 
first or last en route sector in the flight’s trajectory. 

There is a second difficulty.  It is clearly unacceptable 
to treat sector time prediction errors in successive 
sectors traversed by the same flight as statistically-
independent.  If a flight is cruising faster than expected, 
for example, then the sector transit time should be over-Origin 
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predicted for many successive sectors along the flight 
path.  This effect is captured by including the error 
experienced in the immediately preceding sector as a 
conditioning variable for the error distribution. 

The process is as follows.  For each pair of predicted 
and actual trajectories, the sector transit lists are 
compared in time order.  For each sector with 
corresponding triplet between the predicted and actual 
trajectories, the sector transit time error is calculated by 
subtracting the predicted sector transit time from the 
actual sector transit time.  The observation is stored 
according to the following CVs: 

• 
• 
• 

• 
• 
• 
• 

Sector triplet 
Time-of-day (hourly bins) 
Transit time error from previous sector (signed, 
one-minute bins) 
Aircraft class 
Aircraft type (e.g. B73S) 
Operation category 
ETE 

A parameterized distribution of the following form has 
been derived for these errors… [At the time of this 
writing, this data has not yet been analyzed; it will be 
complete for the final paper] 

Pop-ups 

Pop-ups, in the simulation (step 2e), are not specific to 
sectors or airspace; they are entire trajectories that are 
not anticipated at the time that the prediction was made, 
and thus will affect the demand in many sectors.  
Therefore, the statistical model for pop-ups is not 
explicitly conditioned on sectors or sector triplets.  The 
model includes distributions of the number of pop-ups 
that will depart at each LAT (in 15 minute bins), and a 
classified list of trajectories from which to choose pop-
ups when they are deemed to occur.  In other words, 
step 2e in a simulation run is done as follows: 

• 

• 

• 

• 

• 
• 
• 

For each LAT bin (0-15 minutes, 15-30 minutes, 
etc.) calculate, from the observed distribution, how 
many pop-up flights will appear. 
For each bin, select the requisite number of flights 
from the trajectory list. 
Calculate a new runway departure time for each 
flight from a uniform distribution over the interval 
covered by the LAT bin, and shift all sector transit 
entry times to correspond. 
Add these flights to the trajectory list for this 
simulation run. 

Calculating distributions for each LAT bin is not 
difficult, since as described in the data collection 
process, each actual record contains a list of LAT bins 

for which it does and does not have a corresponding 
prediction.  Since a full set of pop-up trajectories are 
being saved from which to sample, we do not need 
many conditioning variables; only those which affect 
the pop-up frequency are required.  The following have 
been chosen as significant variables: 

LAT (15-minute bins) 
time-of-day at departure (hourly bins) 
day-of-week 

These are used to govern both the pop-up frequency 
distribution, and the pop-up trajectory “pool” from 
which samples can be taken.  The frequency 
distribution is NAS-wide, not sector-specific.  So, 
although sector and sector traffic type are not variables, 
the differing effects of pop-up traffic on sectors is 
captured by this model.  For example, sectors with large 
proportions of unscheduled general aviation traffic 
would be expected to have a higher pop-up rate.  Since 
the captured pop-up trajectories will have a larger 
proportion of general aviation traffic than the overall 
trajectory population, sectors with such traffic will, 
correctly, exhibit a higher rate of pop-ups.  Another 
sector-based difference, between arrival and departure 
sectors, will be illustrated in the next section. 

Measured Uncertainty Characteristics: Pop-ups 

At this writing, no completed simulation results are 
available.  However, the statistical modeling data itself 
is of interest, since it provides insight into demand 
prediction uncertainty.  One significant uncertainty 
source is illustrated here: the impact of pop-up flights 
on sector demand predictions, and how it varies with 
LAT and sector traffic type.   

Pop-up distributions have been captured for the June 4-
6, 2003 data previously described, and their impact on 
two sectors in the ZDC (Washington, D.C.) ARTCC 
has been analyzed.  Figure 5 shows the impact of pop-
ups on a sector which primarily handles departing 
traffic, for predictions of LAT 30 to 45 minutes, during 
four hours of the day (0900-1300 UTC).  Under these 
conditions, there is an 85% probability that no 
unexpected flights will appear in the actual demand, 
with much smaller probabilities that one or two flights 
will appear.  A fitted geometric distribution is also 
shown. 

In contrast, Figure 6 shows predictions for the same 
sector at 120-135 minute LAT.  In this case, the most 
likely result is still that no pop-ups will appear, but the 
probability is only 42%.  There are significant 
probabilities that one or more flights will appear, 
including a 2% probability that five pop-ups will show 
up.  Put another way, there is nearly a 40% probability 
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Figure 5: Pop-ups, Departure Sector ZDC05, 0900-1300 

UTC, LAT 30-45 min. 
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Figure 6: Pop-ups, Departure Sector ZDC05, 0900-1300 

UTC, LAT 120-135 min. 

that two flights will be present that were not predicted 
at all. 

The situation looks different in a sector which primarily 
handles arrival traffic.  Figure 7 illustrates the pop-up 
distribution for an arrival sector, also at 120-135 minute 
LAT.  Compared with Figure 6, significantly fewer 
pop-up flights are expected to appear.  This is 
consistent with the physics of the situation.  In the 
departure sector, almost all of the flights predicted to 
enter the sector 120 minutes from prediction time will 
be on the ground, and in some cases will not even have 
filed a flight plan, at the prediction time.  In contrast, 
flights arriving two hours from now will most likely 
have filed plans, and in many cases will already be 
airborne; hence, it is less likely that the decision support 
system will not yet know about them. 

Previous work10 has found that sector demand is, on 
average, under-predicted at long LAT.  The pop-up 

distributions suggest one reason why this is so, though 
the other uncertainty sources also need to be studied to 
draw strong conclusions. 

Model Validation 

To date, the model has not been validated, since the 
statistical modeling process is not yet complete.  
Nonetheless, it is worth discussing what validation 
should be done, and what can be done with the 
available data sources.  First, the model can be 
validated in an overall way, by comparing predicted 
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Figure 8:  Mean and Std Dev. of Peak Count Prediction 

Errors for Mixed-Traffic Sectors by LAT (min) 
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Figure 7: Pop-ups, Arrival Sector ZDC18, 0900-1300 UTC, 
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sector demand uncertainties with measured ones.  For 
example, see Figure 8, reproduced from Ref. 10.  It 
shows the measured mean and standard deviation of 
errors in peak-count predictions in mixed-traffic-type 
sectors, as used by the ETMS Monitor/Alert function.  
These measured values are available for several sector 
types, at LAT ranging from 15 minutes to 6 hours.  The 
results of the simulation described in this paper will be 
compared to these measurements as the first validation 
step.     

There are several key assumptions in the model that 
require validation at a more detailed level.  One such 
assumption is that the different uncertainty sources 
included in the model are statistically-independent.  
There are plausible reasons for this assumption to fail 
under some conditions.  For example, if a scheduled air 
carrier flight departs late, it seems likely that it would 
cruise at a faster speed to make up time. Such 
correlations could be detected by statistical study of the 
joint distributions, and if warranted, additional variables 
can be added to the statistical models to account for 
such effects. 

Another assumption was made in using sector triplets to 
classify sector transit time prediction errors.  It is 
possible to evaluate this assumption directly by taking a 
sample of high-resolution trajectory data (i.e., not 
reduced to sector-transit form), evaluating the flight 
progress prediction errors, and then comparing the 
results to those achieved through the sector-triplet 
method.  These, and other specific validation tasks, are 
planned for later in 2004.  

Discussion 

The simulation method described here has several 
important applications.  The primary goal of developing 
it was to study TFM decision making. Once prediction 
error distributions are available, formal decision 
analysis techniques can be applied to study present-day 
decision making procedures, to develop better problem-
solving strategies for common TFM problems, or even 
to develop new procedures that explicitly take 
prediction uncertainty into account when formulating 
solutions to a problem.  Probabilistic demand displays 
are under development as a part of this work.7 

It is also possible, given sufficient computing power, to 
use a simulation of this type for real-time decision 
support.  In this application, the impact of a proposed 
TFM initiative could be evaluated not only in terms of 
the delay or workload that it would impose, but also in 
terms of the probability of success.  This kind of 
feedback would allow traffic managers to decide, as 
one example, whether the initiative should be pursued 
immediately or delayed until the outcome is more 

certain.  Finally, it is anticipated that TFM decision 
support tools will eventually be able to actively suggest 
solutions to traffic managers.  It will be essential for 
such systems to measure and use demand prediction 
uncertainties – and possibly airspace capacity 
prediction uncertainties – when formulating suggested 
problem solutions.  Knowledge of uncertainty also 
opens the door for solution strategies based on optimal 
estimation and control concepts. 

Finally, aside from direct application to decision 
support research, there is merit in studying the 
magnitude and characteristics of prediction uncertainty 
in the NAS.  The distributions captured for the 
simulation are themselves interesting, in that they 
provide a new look at the accuracy of present NAS 
demand predictions.  It is possible, for example, to 
identify specific NAS sectors where predictions are 
particularly poor.  This provides insight into how to 
improve predictions, either by improving modeling 
techniques, or perhaps by seeking new data sources 
which could reduce uncertainty.  

Also, “increased predictability” is a possible benefit of 
many proposed ATC and TFM automation programs.  
Systems that support better airport surface traffic 
management might reduce departure time prediction 
uncertainty.  Such effects can be modeled in the 
simulation by altering the departure time uncertainty 
model to reflect the proposed improvement. The 
simulation could then be run to evaluate the impact of 
the improvement on overall demand prediction 
uncertainty, and using a human-in-the-loop experiment 
or an automated set of decision rules, the decision-
making benefits of the accuracy improvement could be 
evaluated. 
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